Determination of Solute Permeability in Chara Internodes by a Turgor Minimum Method : Effects of External pH.
نویسندگان
چکیده
The analysis of Sha'afi et al. (Sha'afi, Rich, Mickulecky, Solomon 1970 J Gen Physiol 55: 427-450) for determining solute permeability in red blood cells has been modified and applied to turgid plant cells. Following the addition of permeating solute to the external medium, a biphasic response of cell turgor can be measured with the pressure probe in isolated internodes of Chara corallina. After an initial decrease in turgor due to water flow (water phase), turgor increases due to the uptake of the solute (solute phase) until the original turgor is reattained. From the pressure/time course in the neighborhood of the minimum turgor, the permeability of the osmotic solute can be determined. The data obtained by the minimum method for rapidly permeating (ethanol, methanol) and slowly permeating (formamide, dimethylformamide) solutes are similar to those calculated from the half-time of pressure changes during the solute phase and to data obtained by other workers using radioactive tracers. The methods employing the pressure probe were applied to examine the effect of high pH (up to pH 11) on the membrane permeability. There appeared to be no effect of high pH on the permeability coefficients, reflection coefficients, and hydraulic conductivity.
منابع مشابه
A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration.
Isolated internodes of Chara corallina have been used to study the gating of aquaporins (water channels) in the presence of high concentrations of osmotic solutes of different size (molecular weight). Osmolytes were acetone and three glycol ethers: ethylene glycol monomethyl ether (EGMME), diethylene glycol monomethyl ether (DEGMME), and triethylene glycol monoethyl ether (TEGMEE). The 'osmotic...
متن کاملIdentifying cytoplasmic input to the cell wall of growing Chara corallina.
Plants enlarge mostly because the walls of certain cells enlarge, with accompanying input of wall constituents and other factors from the cytoplasm. However, the enlargement can occur without input, suggesting an uncertain relationship between cytoplasmic input and plant growth. Therefore, the role of the input was investigated by quantitatively comparing growth in isolated walls (no input) wit...
متن کاملThermosolutal Convection of Micropolar Rotating Fluids Saturating a Porous Medium
Double-diffusive convection in a micropolar fluid layer heated and soluted from below in the presence of uniform rotation saturating a porous medium is theoretically investigated. An exact solution is obtained for a flat fluid layer contained between two free boundaries. To study the onset of convection, a linear stability analysis theory and normal mode analysis method have been used. For the ...
متن کاملMODELLING OF THE PERMEABILITY FOR COLUMNAR DENDRITE STRUCTURES DURING SOLIDIFICATION OF MUSHY ALLOYS
A numerical model has been developed for the determination of liquid flow permeability through columnar dendrite during growth. The model is inclusive two stages, first numerical evolution of the dendrite shape during growth, and second numerical determination of the interdendritic liquid permeability. Simulation results shown which solute concentration by evolution of dendrite shape could resu...
متن کاملThe Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles
Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf ) is the parameter that better charact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 74 3 شماره
صفحات -
تاریخ انتشار 1984